電波通信

I'm on the Top. of the world.

コンパクト性と閉射影:Kuratowski-Mrówka's Thoerem

PDFはないですが、その内に追加する予定です。PDFを追加しました。

完全正則空間とか:未完成

3と1/2番線

可算コンパクトとメタコンパクト

可算コンパクトなメタコンパクト空間

正規空間その0:単位の分割[未完成]

未完成です。

一様空間/未完成

その昔書いた文章をサルベージ

ハウスドルフ空間の中の稠密な局所コンパクト部分集合が開集合であること

局所閉とかいういまいち使いどころのわからない概念。

いわゆる志賀多様体における多様体の埋め込み定理のための次元論的な補題の証明

次元論を使います。

L^1の畳込みに関する単位元が存在しないこと

なんとなく書きました。

入射角16.225°の測度論入門:ω_0

測度論の記事のそのω_0です。 先に最終回を作っておくというターンエーガンダムみたいな思考です。

実数の閉部分群

実数の閉部分群の同定です。系としてクロネッカーの稠密性定理が得られます。

等高線と連続関数:ウリゾーンの補題とティーチェの拡張定理:正規空間その(-1)

等高線の話とウリゾーンの補題とか、正規空間の特徴付けとかです。

距離化可能定理part2:近傍

近傍を使った距離化可能定理です。

可算パラコンパクトではないメタコンパクトσコンパクトハウスドルフ空間そんでムーア空間でない展開可能空間

反例でつ

固有写像と完全写像に関係する反例

反例でつ

距離化可能定理part-1:BNS

パート-1です。マイナスです。ビング・長田・スミルノフの距離化可能定理です。

距離化可能定理part1:Alexandroff-Urysohn-Tukey

距離化可能定理パート1デス。

距離化可能定理part0:破片

位相空間が距離化可能な破片の和になってる時の距離化可能定理です。

点列コンパクト性とコンパクト性は無関係

点列コンパクト性とコンパクト性は無関係って言うはなし

距離空間の距離の修正

位相を変えずに距離をちょっと修正するはなし

コンパクト性と全有界性と完備性

あけましておめでとうございます。たぶん。

未完成(接着、帰納極限、CW複体)

第二次α版。未完成。

パラコンパクト性など3

2と3を同じ日に公開してしまいます。

パラコンパクト性など2

まさか続くとは思ってませんでした。

順序数の位相的重み

暇だったんでやってみました。

The Horrible lemma

なんか変な名前の補題です。ヤバイ補題という名前だとでも言うのか

正規性の特徴付け

正規性の言い換えです。

遺伝的正規とか完全正規

正規より強い分離公理の話です。

パラコンパクト性など:アドベントカレンダー2015

Math Advent Calender 2015の12/15の記事です。来週忙しそうなのでアドベントカレンダーをフライングします。(フライングできなかった(フライングできた))

ストーンチェックコンパクト化の構成

構成だけして性質とかは証明しません。

未完成(tube lemma)

未完成